all files= github Experiment 1 Copy Code 1 # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the dataset dataset = pd.read_csv('Salary_Data.csv') X = dataset.iloc[:, :-1].values # Features (Years of Experience) y = dataset.iloc[:, -1].values # Target (Salary) # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/3, random_state=0) # Training the Simple Linear Regression model on the Training set from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(X_train, y_train) # Predicting the Test set results y_pred = regressor.predict(X_test) # Visualizing the Training set results plt.scatter(X_train, y_train, color='red') plt.plot(X_train, regressor.predict(X_train), color='blue') plt.title('Salary v...